and the angle between this plane and that of the three Os atoms is 109°.

The Os-Os bond lengths ($2 \cdot 803,2 \cdot 838,2.842 \AA$) are similar to those found previously; e.g. in $\left[\mathrm{HOs}_{3}(\mathrm{CO})_{10}\left(\mathrm{CHCH}=\mathrm{NEt}_{2}\right)\right]$ the analogous lengths were $2.785,2.866$ and $2.870 \AA$ (Shapley, Tachikawa, Churchill \& Lashewycz, 1978). Os(2) has coordination number 6 , while $\mathrm{Os}(1)$ and $\mathrm{Os}(3)$ have coordination number 7 (including the hydrogen bridge). All three Os atoms obey the effective-atomic-number rule; $\mathrm{Os}(1)-\mathrm{Os}(2), \mathrm{Os}(3)-\mathrm{Os}(2)$ have a formal metalmetal bond order of $1 . \mathrm{Os}(1)-\mathrm{Os}(3)$ is shortened by the two bridging groups, as was found in $\left|\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}\right|$ itself where the bond lengths are $2 \cdot 683,2 \cdot 814,2 \cdot 815 \AA$ (Broach \& Williams, 1979).

The arrangement of the CO groups about $\mathrm{Os}(2)$ of the $\mathrm{Os}(\mathrm{CO})_{4}$ group is identical to that in $\left[\mathrm{HOs}_{3}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{H}_{3}\right)\right]$ (Orpen, Rivera, Bryan, Pippard, Sheldrick \& Rouse, 1978) and $\mid \mathrm{HOs}_{3}(\mathrm{CO})_{10}(p$ $\left.\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NC}(\mathrm{H}) \mathrm{O}\right)$ (Adams \& Golembeski, 1979) but differs from that in $\left[\mathrm{HOs}_{3}(\mathrm{CO})_{10}\left(\mathrm{CF}_{3} \mathrm{CCHCF}_{3}\right)\right]$ (Laing, Sommerville, Dawoodi, Mays \& Wheatley, 1978). In this latter compound, $\operatorname{Os}(2)$ is σ-bonded to a C atom, thus raising its coordination number to 7 while simultaneously forcing a change in orientation of the $\mathrm{Os}(\mathrm{CO})_{4}$ moiety. The angle $\mathrm{C}(21)-\mathrm{Os}(2)-\mathrm{C}(23)$ in this compound clearly exceeds 90°, as does its geometric analogue in the present case, $\mathrm{C}(22)-\mathrm{Os}(2)-\mathrm{C}(23)$, which is 105°.

ML thanks the South African Council for Scientific and Industrial Research for financial support and Dr G. Gafner, National Physical Research Laboratory, CSIR, for collecting the intensities. PJW thanks the University of Natal for a Visiting Lectureship, during the tenure of which this work was carried out.

References

Adams. R. D. \& Golembeski. N. M. (1979). J. Organomet. Chem. 171. C21-C26.
Broach, R. W. \& Williams, J. M. (1979). Inorg. Chem. 18. 314-318.
Churchill. M. R. \& Lin. K. G. (1975). Inorg. Chem. 14. 1675-1680.
International Tables for X-ray Crystallography (1962). Vol. III, pp. 202-203. Birmingham: K ynoch Press.
Laing. M., Sommerville, P.. Dawoodi. Z., Mays. M. J. \& Wheatley. P. J. (1978). Chem. Commun. pp. 10351036.

Lipson. H. \& Cochran. W. (1966). The Determination of Cri'stal Structures. 3rd ed.. pp. 165-169. London: Bell.
Mays, M. J., Prest, D. W. \& Raithby, P. R. (1980). Chem. Commun. pp. 171-173.
Orpen. A. G.. Rivera. A. V.. Bryan. E. G.. Pippard. D.. Sheldrick. G. M. \& Rouse. K. D. (1978). Chein. Commun. pp. 723-724.
Shapley. J. R., Tachikawa. M.. Churchill. M. R. \& Lashewycz, R. A. (1978). J. Organomet. Chem. 162. C39-C42.

Acta Cryst. (1981). B37, 2232-2234

The Structure of Calcium Methanedisulfonate Trihydrate

By Anastas Karipides
Department of Chemistry, Miami University, Oxford, Ohio 45056, USA

(Received 27 March 1981; accepted 2 June 1981)

Abstract

Ca}\left(\mathrm{CH}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right], \mathrm{CH}_{8} \mathrm{CaO}_{9} \mathrm{~S}_{2}\), monoclinic, $P 2_{1} / n, a=5.777$ (1), $b=19.469$ (4), $c=$ 7.748 (2) $\AA, \beta=92.98(2)^{\circ}, V=870.3 \AA^{3}, Z=4$, $d_{c}=2.05, d_{m}=2.03 \mathrm{Mg} \mathrm{m}^{-3}, \mu($ Mo $K a)=1.2 \mathrm{~mm}^{-1}$, $R=0.033$ and $R_{w}=0.051$ for 1451 counter-collected reflections. The sevenfold, approximately pentagonal bipyramidal, coordination polyhedron around the Ca^{2+} ion consists of three water molecules and four sulfonate O atoms from three different methanedisulfonate ions. The methanedisulfonate ligand binds one Ca^{2+} ion forming a six-membered chelate ring and is linked to two other Ca^{2+} ions by unidentate bridging bonds. The ligand occurs in a conformation which has approximate $C_{2 v}$ symmetry.

Introduction. Colorless single crystals were readily grown by evaporation from an aqueous solution of the 1:1 salt. From indexed Weissenberg photographs the crystals were found to be monoclinic and the systematic absences $h+l$ odd for $h 0 l$ and k odd for $0 k 0$ indicated space group $P 2_{1} / n$ |a non-standard setting for $P 2_{1} / c$ with general positions $\pm\left(x, l, z ; \frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+\right.$ $z)$. A single crystal with approximate dimensions 0.3 $\times 0.3 \times 0.2 \mathrm{~mm}$ was used to collect accurate unit-cell parameters as well as three-dimensional X-ray intensity data on an automated diffractometer. A total of 1578 data out to $2 \theta=50^{\circ}$ were collected using Mo Ka radiation and the $\theta-2 \theta$ scan technique.

The raw intensity data were assigned e.s.d.'s from © 198I International Union of Crystallography
counting statistics and reduced to values of F_{o} and $\sigma\left(F_{o}\right)$. A total of 1451 reflections had $F_{o}>\frac{1}{2} \sigma\left(F_{o}\right)$ and these were used in subsequent calculations.

The structure was solved using a combination of direct and heavy-atom methods. H atoms were located from a difference Fourier synthesis phased by all the non- H atoms which had been anisotropically refined. An isotropic temperature factor of $5.0 \AA^{2}$ was assigned to each H atom. The entire structure was refined by a full-matrix least-squares procedure, although the H atom parameters were not varied. A total of 118 parameters including one scale factor was refined yielding a data: parameter ratio of $12 \cdot 3: 1$. The function minimized was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ where the weight, w, was taken to be $\left[\sigma\left(F_{o}\right)\right]^{-2}$. The structure refinement converged to a conventional R index, $\sum\left|\left|F_{o}\right|-\left|F_{c}\right|\right|$ $\sum\left|F_{o}\right|$ of 0.033 and a weighted R_{w} index, $\left[\sum w\left(\left|F_{o}\right|-\right.\right.$ $\left.\left.\left|F_{c}\right|\right)^{2} / \sum w\left|F_{o}\right|^{2}\right]^{1 / 2}$ of 0.051 . In the final least-squares cycle no parameter varied by more than 0.01 times its e.s.d. The goodness-of-fit was 1-72. An analysis of $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ as a function of $F_{o}, \sin \theta / \lambda$ or Miller indices indicated no unusual trends. A final difference synthesis was essentially flat. The neutral scattering factors of all atoms were taken from International Tables for X-ray Crystallography (1974) and included corrections for the real and imaginary anomalous dispersion of calcium. The programs used in the solution and refinement of this structure have been

Table 1. Positional parameters ($\times 10^{5}$ for non -H atoms; $\times 10^{3}$ for H atoms) and equivalent isotropic temperature factors with e.s.d.'s
$B_{\text {eq }}$'s for the non-H atoms were calculated from the deposited anisotropic coefficients following the definition given by Hamilton (1959).

	x	v	z	$B_{\text {eq }}\left(\AA^{2}\right)$
Ca	5475 (8)	11227 (2)	24607 (6)	$1 \cdot 18$ (3)
S(1)	-16677 (10)	22786 (3)	-8732 (7)	$1 \cdot 22$ (3)
S(2)	-47371 (10)	10642 (3)	-4417 (7)	1.11(5)
$\mathrm{O}(1)$	-4363 (31)	21574 (9)	7876 (23)	1.63 (7)
O(2)	-19406 (33)	30148 (9)	-12144 (26)	2.09 (9)
$\mathrm{O}(3)$	-6870 (32)	19109 (10)	-22804 (23)	2.06 (8)
$\mathrm{O}(4)$	-70518 (31)	9315 (9)	1520 (24)	1.77 (7)
O(5)	-29340 (32)	8682 (9)	8345 (25)	1.97 (9)
O(6)	-44201 (31)	7732 (9)	-21313 (23)	1.85 (8)
O(7)	-21452 (36)	13980 (12)	45071 (24)	2.73 (9)
$\mathrm{O}(8)$	75 (35)	-1111(10)	23218 (24)	2.14 (9)
$\mathrm{O}(9)$	28262 (56)	5770 (13)	47485 (36)	$5 \cdot 49$ (15)
C	-45648 (42)	19738 (12)	-6620 (32)	1.31 (9)
H1(C)	-510	220	33	
H2(C)	-540	216	-173	
H (O 7)	-189	152	559	
H2(O7)	-375	145	428	
H1(08)	-89	-28	153	
H2(08)	113	-32	235	
H1(09)	336	73	570	
H2(09)	390	55	420	

described (Karipides, 1979). The final positional parameters are given in Table 1.*

Discussion. A view of the CaO , coordination polyhedron, mode of ligand- Ca^{2+} binding and atom-numbering scheme are shown in Fig. 1. The Ca^{2+} ion is seven-coordinate and the CaO_{7} polyhedron consists of the Ca^{2+} ion surrounded by four methanedisulfonate O atoms $\mathrm{O}(1), \mathrm{O}\left(2^{1}\right), \mathrm{O}\left(4^{\mathrm{il}}\right), \mathrm{O}(5)$ and three water molecules $O(7), O(8)$, and $O(9)$. The nature of the seven-coordinate geometry for the coordination polyhedron can be estimated using the formalism suggested by Muetterties \& Guggenberger (1974) and discussed by Drew (1977). Although examination of the sevenatom shape characteristics reveals a small distortion towards a monocapped octahedron, the polyhedron is best described in terms of a pentagonal bipyramid (Fig. 1). The five atoms $O(1), O(5), O(8), O(9)$ and $O\left(2^{1}\right)$ which form the pentagonal girdle of the polyhedron are close to coplanarity. The maximum deviation from the least-squares plane through these atoms is $0.34 \AA$. The average $\mathrm{O}-\mathrm{Ca}-\mathrm{O}$ angle in the pentagonal girdle is 72.7°. The $\mathrm{Ca}-\mathrm{O}\left(4^{\text {II }}\right)$ and $\mathrm{Ca}-\mathrm{O}(7)$ axial bond vectors form angles of 3 and 5° respectively, with this pentagonal plane.

Each methanedisulfonate ligand binds three Ca^{2+} ions. One Ca^{2+} ion is coordinated to O atoms $\mathrm{O}(1)$ and $\mathrm{O}(5)$, forming a highly buckled six-membered chelate ring. In addition, O atoms $O(2)$ and $O(4)$ form single

[^0]

Fig. 1. A view of the structure showing the CaO_{7} coordination polyhedron, mode of methanedisulfonate- Ca^{2+} binding and the atom-numbering scheme. H atoms have been omitted for clarity. The superscripts specify the symmetry-related positions of the atoms given in Table 1: (i) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$; (ii) $1+x, y, z$; (iii) $x-1, y, z$; (iv) $x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}$.
bridge bonds to two different Ca^{2+} ions which results in a polymeric crystalline structure. Ligand O atoms $\mathrm{O}(3)$ and $\mathrm{O}(6)$ are not involved in Ca^{2+}-ion binding but they do participate in the hydrogen-bonding scheme.

The 2.349 to $2.446 \AA$ range in $\mathrm{Ca}-\mathrm{O}$ distances involving sulfonate O atoms is significantly greater than the 2.285 to $2.339 \AA$ spread found in calcium methanesulfonate, $\mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{SO}_{3}\right)_{2}$, where the Ca^{2+} ion is only six-coordinate (Charbonnier, Faure \& Loiseleur. 1977). This difference suggests a similar correlation of Ca -sulfonate-oxygen lengths with coordination number in the manner reported for Ca -carboxylate-oxygen distances (Einspahr \& Bugg, 1977).

The dimensions of the methanedisulfonate ion given in Table 2 are essentially similar to the values found in potassium methanedisulfonate (Truter, 1962) and silver methanedisulfonate (Charbonnier, Faure \& Loiseleur, 1979) which to our knowledge are the only other reported structures containing the methanedisulfonate moiety. The only significant difference is in the $\mathrm{S}-\mathrm{C}-\mathrm{S}$ angle which is considerably more contracted in the Ca salt $\left[113.3(1)^{\circ}\right]$ than in the $\mathrm{K}\left[119.7(7)^{\circ} \mid\right.$ or Ag [117.7 (7) and $116.4(7)^{\circ}$ | derivatives.

In calcium methanedisulfonate the two sulfonate groups of the ligand are twisted by about 7° from idealized $C_{2 v}$ symmetry. In this $C_{2 v}$ conformation the $\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{C}-\mathrm{S}(2)-\mathrm{O}(4)$ grouping forms a planar 'W' (Uchtman \& Gloss, 1972; Libson, Deutsch \& Barnett, 1980). This same conformation is also found in the K salt and in one of two methanedisulfonate ions present in the Ag compound.

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$
Superscripts are defined in Fig. 1.

$\mathrm{Ca}-\mathrm{O}(1) \quad 2$	2.446 (2)	$\mathrm{S}(1)-\mathrm{O}(1) \quad 1.4$	1.457 (2)
$\mathrm{Ca}-\mathrm{O}\left(2^{\text {i }}\right.$) 2	2.413 (2)	$\mathrm{S}(1)-\mathrm{O}(2) \quad 1.4$	1.465 (2)
$\mathrm{Ca}-\mathrm{O}\left(4^{\text {i }}\right.$) 2	$2 \cdot 349$ (2)	$\mathrm{S}(1)-\mathrm{O}(3) \quad 1.4$	1.444 (2)
$\mathrm{Ca}-\mathrm{O}(5) \quad 2$	$2 \cdot 370$ (2)	$\mathrm{S}(2)-\mathrm{O}(4) \quad 1.4$	1.460 (2)
$\mathrm{Ca}-\mathrm{O}(7) \quad 2$	$2 \cdot 340$ (2)	$\mathrm{S}(2)-\mathrm{O}(5) \quad 1.4$	1.450 (2)
$\mathrm{Ca}-\mathrm{O}(8)$	$2 \cdot 242$ (2)	$\mathrm{S}(2)-\mathrm{O}(6) \quad 1$.	1.447 (2)
$\mathrm{Ca}-\mathrm{O}(9) \quad 2$	2.400 (2)	$\mathrm{C}-\mathrm{S}(1) \quad 1$.	1 (3)
		$\mathrm{C}-\mathrm{S}(2) \quad 1$.	1.782 (3)
$\mathrm{O}(1)-\mathrm{Ca}-\mathrm{O}\left(2^{\text {i }}\right.$)) 76.73 (6)	$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{O}(2)$	$111.2(1)$
$\mathrm{O}(1)-\mathrm{Ca}-\mathrm{O}(5)$) 73.92 (6)	$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{O}(3)$	113.2 (1)
$\mathrm{O}(5)-\mathrm{Ca}-\mathrm{O}(8)$	70.45 (6)	$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{O}(3)$	113.0 (1)
$\mathrm{O}(8)-\mathrm{Ca}-\mathrm{O}(9)$	70.03 (8)	$\mathrm{O}(4)-\mathrm{S}(2)-\mathrm{O}(5)$	112.1 (1)
$\mathrm{O}(9)-\mathrm{Ca}-\mathrm{O}\left(2^{\text {i }}\right.$)) 72.50 (7)	$\mathrm{O}(4)-\mathrm{S}(2)-\mathrm{O}(6)$	112.1 (1)
$\mathrm{O}(7)-\mathrm{Ca}-\mathrm{O}\left(4^{\text {ii) }}\right.$	172.54 (8)	$\mathrm{O}(5)-\mathrm{S}(2)-\mathrm{O}(6)$	113.2 (1)
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{C}$	108.0 (1)	$\mathrm{S}(1)-\mathrm{C}-\mathrm{S}(2)$	113.3 (1)
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{C}$	104.4 (1)	$\mathrm{O}(6)-\mathrm{S}(2)-\mathrm{C}$	107.0 (1)
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}$	$106 \cdot 3$ (1)	$\mathrm{O}(5)-\mathrm{S}(2)-\mathrm{C}$	106.6 (1)
		$\mathrm{O}(4)-\mathrm{S}(2)-\mathrm{C}$	105.2 (1)

Table 3. Hydrogen-bond distances (\AA) and angles $\left({ }^{\circ}\right)$
Donor (D) and H atoms have the coordinates listed in Tables 1 and 2. The following superscripts specify the symmetry-related positions of the acceptor (A) atoms: (v) $x .1!1+z:($ vi $) x-\frac{1}{2}, \frac{1}{2}-1$. $\frac{1}{2}+z$: (vii) $-1-x,-1,-z:$ (viii) $-x,-1:-z$: (ix) $1+x .1: 1+z$.

Hydrogen bond	$D \cdots A$	$\mathrm{H} \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}(7)-\mathrm{H} 1(\mathrm{O} 7) \cdots \mathrm{O}\left(3^{\text {v }}\right)$	$2.772(3)$	1.91	165
$\mathrm{O}(7)-\mathrm{H} 2(\mathrm{O} 7) \cdots \mathrm{O}\left(2^{\text {vi }}\right)$	$3.022(3)$	$2 \cdot 14$	157
$\mathrm{O}(8)-\mathrm{H} 1(\mathrm{O} 8) \cdots \mathrm{O}\left(4^{\text {vil }}\right)$	$2.966(3)$	2.14	166
$\mathrm{O}(8)-\mathrm{H} 2(\mathrm{O} 8) \cdots \mathrm{O}\left(6^{\text {vili }}\right)$	$2.867(3)$	2.11	170
$\mathrm{O}(9)-\mathrm{H} 1(\mathrm{O} 9) \cdots \mathrm{O}\left(6^{\text {® }}\right)$	$2.850(3)$	2.06	156

There is an extensive network of hydrogen bonds utilizing five of the six H atoms from the water molecules. All acceptor atoms are sulfonate O atoms. An interesting feature is the non-participation of $\mathrm{H} 2(\mathrm{O} 9)$ in the hydrogen-bonding scheme. Although the $\mathrm{Ca} \cdots \mathrm{H} 2(\mathrm{O} 9)$ distance of $2.56 \AA$ is at the low end of accepted $\mathrm{Ca} \cdots \mathrm{H}$ contacts involving water molecules, the reported $\mathrm{H} 2(\mathrm{O} 9)$ position was clearly indicated in the difference Fourier map (Einspahr \& Bugg, 1980). Pertinent hydrogen-bonding parameters are summarized in Table 3.

The author is grateful to Miami University and the Faculty Research Committee for a generous allocation of computer time and financial support.

References

Charbonnier, F., Faure, R. \& Loiseleur, H. (1977). Acta Cryst. B33, 1478-1481.
Charbonnier, F., Faure, R. \& Loiseleur. H. (1979). Acta Cryst. B35, 1773-1775.
Drew, M. G. B. (1977). Prog. Inorg. Chem. 23, 67-210.
Einspahr, H. \& Bugg, C. E. (1977). Calcium Binding Proteins and Calcium Function, edited by R. H. Wasserman, R. A. Corradino, E. Carafoll, R. H. Kretsinger, D. H. Maclennan \& F. L. Siegel, pp. 13-20. New York: Elsevier/North-Holland.
Einspahr, H. \& Bugg, C. E. (1980). Acta Cryst. B36, 264-271.
Hamilton, W. C. (1959). Acta Cru'st. 12, 609-610.
International Tables for X-ray Cry'stallography (1974). Vol. IV. Birmingham: Kynoch Press.

Karipides, A. (1979). Inorg. Chem. 18, 3034-3037.
Libson, K., Deutsch, E. \& Barnett, B. L. (1980). J.' Am. Chem. Soc. 102, 2476-2478.
Muetterties, E. L. \& Guggenberger, L. J. (1974). J. Am. Chem. Soc. 96, 1748-1756.
Truter, M. R. (1962). J. Chem. Soc. pp. 3393-3399.
Uchtman, V. A. \& Gloss. R. A. (1972). J. Phy's. Chem. 76. 1298-1304.

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36210 (9 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

